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[요    약] 

빅 는 경제개 에  흥미 운 회  도전  보여 다.  들어, 농업 야에  날씨   양  같  복

합  조합과 들   결과는 농업종사   농업경 체들에게 귀중하고 도움 는 정보  제공한다. 그러나 농업 

는 들과 농업 웹 마켓 등  다양한 형태  치  비스들  통해 매 마다 규  생 다. 는  수집, 저 , 

과 같  빅  슈들  생시킨다. 비   시스 들   문제  해결하  해 제안 었 나, 들  다루는  

종  제약, 저  식  제약,  크  제약 등  문제  여전히 가지고 다.  논문에 는 농업  수집과  플

랫폼  새 운 계  제안한다. 제안하는 플랫폼  (1) Flume과 MapReduce  한 다양한  스들   수

집 , (2) HDFS, HBase, 그리고 Hive  한 다양한  저  , (3) Spark  Hadoop  한 빅   듈들  

제공한다.

[Abstract]

Big data have been presenting us with exciting opportunities and challenges in economic development. For instance, in the 

agriculture sector, mixing up of various agricultural data (e.g., weather data, soil data, etc.), and subsequently analyzing these data 

deliver valuable and helpful information to farmers and agribusinesses. However, massive data in agriculture are generated in 

every minute through multiple kinds of devices and services such as sensors and agricultural web markets. It leads to the 

challenges of big data problem including data collection, data storage, and data analysis. Although some systems have been 

proposed to address this problem, they are still restricted either in the type of data, the type of storage, or the size of data they 

can handle. In this paper, we propose a novel design of a platform for collecting and analyzing agricultural big data. The proposed 

platform supports (1) multiple methods of collecting data from various data sources using Flume and MapReduce; (2) multiple 

choices of data storage including HDFS, HBase, and Hive; and (3) big data analysis modules with Spark and Hadoop.
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Ⅰ. Introduction

Big data plays an important role in modern agriculture 

development. It has been a key driver of the progress made in 

precision agriculture, whereby farmers and agribusinesses are 

using the resources at their disposal in the most efficient way 

possible to get maximum yields. However, the massive data in 

agriculture are generated in every minute through multiple kinds 

of devices and services such as sensors, social networks, and 

agricultural web markets. Therefore, collecting these data from 

the many sources and translating them into useful information are 

the challenges of big data in order to improve business processes 

continuously.

There are several techniques and tools for collecting data from 

web sites as shown in [1][2]. The most popular web page 

analyzing tool is Jsoup [3] based on Java. Jie Wang et al. [4] have 

been designed and implemented an agricultural products big data 

platform based on Jsoup, in which the data were extracted from 

the URL and contents of agricultural web sites. However, their 

system only supported to deploy on a single computer which 

encounters various challenges of big data problem. Also, 

collecting data from web sites has a limitation of the number of 

available HTTP requests. It often takes a few seconds per request 

to obtain available resources. Meanwhile, most of agriculture web 

sites provide the data as a form of a table with many pages, and it 

requires a lot of simultaneous HTTP requests to crawl these data. 

For example, in the web site of Gwangju Seobu market, the price 

data of agriculture products are generated in around five hundred 

pages per day, and these data are updated continuously in every a 

few minutes. Therefore, in order to crawl these continuous and 

large data with high performance as well as high availability, it is 

essential to design a crawling system which collects data in 

parallel and real-time fashion. In this paper, we design a data 

collector based on Flume [5] and Hadoop [6] framework (more 

details see in Section 3).

For data storage, a traditional database system such as a 

Relational DataBase Management System (RDBMS) is not 

suitable to store various types of big data. Currently, Hadoop 

Distributed Files System (HDFS) [7] is widely used for a basic 

distributed storage of big data. It enables scalable and reliable 

data storage, and it was designed to span large clusters of 

commodity servers. Besides HDFS which is a basic storage, a 

storage framework for big data is Hbase. Actually Hbase has a 

data model designed to provide quick random access to huge 

amounts of structured data. It is built on the top Apache Hadoop 

and becomes an increasingly popular database choice for 

applications which need fast random access to large amounts of 

data. Another data storage framework is Hive which is used to 

store and process big data in distributed environment with 

SQL-like query language called Hive Query Language(HiveQL). 

In our platform, we utilize the advantages of both storage 

frameworks for designing data storage modules (more details see 

in Section 4).

For analyzing big data, there are several frameworks 

supporting effective parallel processing in distributed modes. 

Apache Hadoop has been the most popular framework for big 

data processing. It provides a parallel computation model 

MapReduce [8]. Recently, Apache Spark [9] has emerged as a 

leading distributed computing framework for real-time analytics 

with its memory-oriented architecture and flexible processing 

libraries. These two frameworks are being widely used in many 

big data applications, and there are some reports for simple 

performance comparison between Hadoop and Spark in past 

[10][11]. However, no comprehensive study related to the 

performance of these two frameworks in the aspect of the volume 

of data and the complexity of computation. In this paper, we 

highlight the performance comparison between Spark and 

Hadoop with various volumes and complexities in order to 

evaluate the design choice of data processing modules of our 

proposed agricultural big data platform.

The rest of this paper is organized as follows. In Section 2, we 

present the architecture of agricultural big data platform. Section 

3 shows the design choice of data collecting modules for crawling 

and aggregating real-time and archival data from Internet. The 

design choice of data storage modules is presented in Section 4. 

In section 5, we presented the design choice of big data 

processing which conducts not only simple arithmetic calculation 

but also various complex analyses such as machine learning 

algorithms and image processing algorithms. Section 6 shows the 

experiment results to evaluate our proposed platform. Finally, we 

conclude this paper and discuss future works in Section 7.

Ⅱ. Architecture of Proposed Platform

We propose a platform for collecting and analyzing agriculture 

big data with four parts as follows: Data Collector, Data Storage, 

Data Analysis, and Decision Making module. Figure 1 shows the 

overview of the architecture of our platform.

The first component in our architecture is Data Collector. We 

separate input data into two kinds of input, the first one is 

real-time data from sensors or web pages and the second is 

archival data from archives. For real-time data, we use Flume to 

collect them into HDFS. For archival data, whose volume is huge, 
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we develop a MapReduce-based module to increase the speed of 

collecting data by gathering them in the parallel manner. During 

collecting data we use Data Cleaner to remove the redundant data 

and irregular data.

In order to store the data from Data Collector, we use Hadoop 

Distributed File System (HDFS) as a basic big data distributed 

storage running on commodity servers with low-cost hardware.  

For Data Storage, we also have HBase which is a distributed 

column-oriented database built on top of HDFS. Hbase is a data 

model designed to provide quick random access to huge amounts 

of structured data. We use other big data storage, Hive, that is a 

data warehouse infrastructure tool to process structured data in 

Hadoop. It resides on top of Hadoop to summarize big data, and 

makes querying easy. Also, we use Sqoop to import data from csv 

and xls files into HDFS, Hive or HBase. Sqoop is also used to 

export the results after analysis back to MySQL. 

Data Analysis is an important component in the proposed 

platform. After collecting and storing data, we develop 

Spark-based and Hadoop-based processing modules for analyzing 

a large amount of data with various methods. To show the 

viability of our platform, we implement various machine learning 

algorithms to making clusters or classifying data in these 

processing modules such as K-Mean and Naive Bayes. 

The last module of the system is Decision Making module. It 

receives the result from the Data Analysis module, and generate 

some useful decisions for user to manage their farm easily. Also, 

it provides the statistical data stored in Data Storage such as 

HDFS, Hive, HBase and MySQL for users to use various kinds of 

purposes.

Ⅲ. Design Choice of Collecting Module

3-1 Design of Real-Time Data Crawling Module

This module is designed to crawl the data generated by other 

systems or services. To simplify the crawling process, we use 

powerful capabilities of handling streaming data of Flume for 

collecting real-time data efficiently and moving large amounts of 

data periodically into HDFS.

Figure 2 shows our design for collecting data using Flume. In 

this model, we use text files as input data of Flume, such as price 

data of products provided from agricultural web sites. We set the 

type of a source is Exec which runs a given command such as 

“tail –F [file]” to generate the fresh and periodic data of prices 

continuously. Here, the memory is used as a Flume channel and 

the generated data from sources are stored in memory. Note that, 

the number of data in channel is configurable in Flume. For the 

final output data, we chose sink type as HDFS which writes 

events into the HDFS as text file format, and these files are used 

for further analysis.

3-2 Design of Archival Data Crawling Module

림 1. 제안 조의 개요

Figure 1. Overview of the proposed architecture

림 3. 하둡 맵리듀스를 이용한 기 적 데이터 수집

Figure 3. Archival data collecting with Hadoop Map 

Reduce

림 2. 아파치 플럼을 이용한 실시간 데이터 수집 

Figure 2. Real-time data collecting with Apache Flume
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림 4. 맵 함수인 DataCrawl의 알고리즘

Figure 4. Algorithm of DataCrawl for map function

Not only real-time data, but also archival data is essential for 

big data analysis. That is, more data is better than more 

sophisticated modelling. Thus, we design a module to collect the 

archival data from various web sites such as few years long price 

data of agricultural products and few years weather information. 

We observed that the data structure of displaying product price is 

similar in the most of Korean agriculture web markets, and the 

amount of data per year is approximately two millions of records. 

To collect these huge data efficiently, we use Hadoop framework 

with MapReduce programming model.

In Figure 3, a simple model of gathering archival data from 

web sites which are described on HDFS input files. A HDFS file 

contains the information of procedures which we want to gather 

from various web sites. The information of procedures is 

described as a tuple of a product code, the url of a web site, target 

year, and target month. The information of procedures are divided 

and each map function handles them with DataCrawl procedures 

which uses Jsoup API to connect and extract data from the web 

site corresponding the information of procedures and store the 

extracted data into HDFS. That is, each map function collects the 

data of product prices from agriculture web market in the order of 

years and months. Detail algorithm of DataCrawl is described in 

Figure 4.

In this module we omit reduce functions, even though 

MapReduce framework provides both of map and reduce function 

because the job of collecting archival data is simple. According to 

this we can take advantages in time by ignoring shuffle and sort 

phase between map and reduce function.

Ⅳ. Design Choice of Data Storage 

Module

4-1 Design of Basic Distributed Storage

Basically, we need a basic storage for storing raw data which 

contains the crawled information from web sites, sensors, and 

users. These raw data are usually contained in text files in 

sequential manner. For example, in case of image processing we 

may convert a RGB color image into gray image which includes 

arrays of bits 0 and 1, and the price data crawled from web sites 

are stored in a text file. These raw data are the basic data for 

analysis and we use HDFS as a basic storage for them.

4-2 Design of Storage for Random Access

Even though most of data are stored on HDFS in our platform, 

we also use HBase to store  structured data in order  to improve 

the performance of searching random data. Sometimes, it is 

required to access any point of data during big data analysis. That 

is, it is essential to provide quick random access to huge amount 

of data in our platform. In order to achieve this effective random 

access, we use HBase for manage a data schema and data storage 

for random access.

Figure 5 shows an example of data schema for agricultural data 

in HBase table. It provides a column-oriented and row-oriented 

mechanism and it manages data through column families and 

Row-ID. Each column family includes several sub-columns like 

the columns in SQL database. When we load the data from HBase 

table to processing phase, all of sub-column will be load together. 

It is more convenient for programmer in processing data. Row-ID 

is an identity of each row. It looks like the index in SQL, which is 

used for random data access.

림 5. Hbase 테이블 데이터 저장의 예

Figure 5. Example of storing data on HBase Table
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4-3 Design of Storage for querying data

In our platform, we also consider an easy API for querying 

data with SQL query language. For this, we use Hive because it is 

simple to implement and easy to integrate into our platform. Hive 

is built on the top of Hadoop and provides SQL query language 

called HiveQL for easy interacted to data.

Ⅴ. Design Choice of Processing Module

In agricultural data processing, we considers to two kinds of 

data: one is text data and another is image data. 

For processing text data, we often work with two kind of 

algorithms: (1) the arithmetic calculation that used to process data 

with only one step (non-iterative job) and (2) machine learning 

algorithms which process data with iterative computation. Both of 

algorithms are supported by our platform with Hadoop and Spark.

For handling image data, we design and implement a image 

processing module which provides customized InputFormat and 

OutputFormat classes of Hadoop for representing image, and 

contains image processing algorithms.

5-1 Design of Non-Iterative Processing

For data analysis, we can consider a non-iterative processing 

job which runs one-time and gets the result. For example, 

calculating the total field area of each farm or the average product 

price of each market is a non-iterative processing job. This job 

handle very large volume of data set such as 2GB of agriculture 

data with more than 11 millions of records which contains the 

information about the farm and its related information (the area 

over each field, products for each field). For supporting this kind 

of jobs, we provide simple algorithm templates for non-iterative 

jobs on both Hadoop and Spark. 

5-2 Design of Iterative Processing

The purpose of this case is to evaluate the performance of 

Hadoop and Spark in processing a huge amount of data with an 

iterative algorithm such as K-means algorithm. K-means 

algorithm is a well-known clustering method. It groups objects 

(data points) based on features into K number of groups. K-means 

algorithm performs the following steps:

Step 1: Selecting k data points from dataset to be used as each 

cluster centroid (random).

Step 2: Assigning data points to clusters according to their 

distance to each cluster centroid.

Step 3: For each cluster, recomputing its cluster centroid using 

the newly assigned cluster members.

Step 4: Going back to step 2 until the process converges.

In k-means algorithm, the computation cost is mainly made in 

the step 2 for calculating distances, and in each iteration it 

requires a total of (n*k) times of distance computations. 

Therefore, the performance of each iteration is the key for 

improving the performance of the algorithm. According to this, 

we separate the distance calculation step from the main algorithm 

and implement a map-reduce function for this step for 

MapReduce and Spark. It is possible because the execution order 

of distance calculation does not affect the final result of 

clustering. Especially for Spark, we implement a Java program to 

set up the parameters and call functions of K-means algorithm in 

Spark MLlib library.

Based on this simple design and implementation, we provide a 

simple templates for iterative jobs on MapReduce and Spark for 

supporting iterative jobs.

5-3 Design of Image Processing Module

In our platform, image processing operations can be divided 

into two levels including low-level image processing and 

high-level image processing. For low-level image processing, we 

provide algorithms for pre-processing which operates at the pixel 

level. The input to low-level image processing operators is an 

image whereas the output is either image or data. For high-level 

image processing, we implement the algorithms in order to 

generate higher abstractions. They are used to interpret the image 

content such as classification and object recognition.

For an example, we implemented a Hadoop based image 

histogram calculation as a low-level image processing. A original 

image has three intensive levels in histrogram including i1, i2 and 

i3. To calculate the histogram for a image with Hadoop, the 

original image is sliced into sub-images and stored on HDFS. 

Then, the following three steps are performed like figure 6.

림 6. 맵리듀스를 이용한 이미지 히스토 램 계산

Figure 6. Image histogram calculation using MapReduce
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Step 1: Each file is read, then the intensities of pixels are 

calculated by map tasks. The input for each map task is a pair 

(key, value), in which key is identified by file name and value is 

the content of sub-image. The output of map task is the list of 

(key’,value’), in which key’ is the intensity level and value’ is the 

number of pixels corresponds to the intensity level.

Step 2: It collects all of (key’,value’) pairs of map tasks, then 

sort and shuffle by key’. The pairs with the same key’ usually are 

gathered belong to a group which will be processed by the same 

reduce task.

Step 3: In the reduce phase, the input is the output of the 

combiner in Step 2, each reduce task has a different key. In this 

example, the key for each reduce task is chosen corresponds to 

each intensity level in the image. This phase performs a 

calculation total of pixels for each intensity level. By assembling 

the output of each reduce task, we can get the final result that is a 

histogram of the original image.

Ⅵ. Platform Deployment

To show viability of our platform, we deploy our proposed 

platform into real machines and evaluate it. Five machines are 

used to deploy the proposed platform which is composed of one 

master node and four slave nodes consequently named as Tiger, 

Lion, Jaguar, Cheetah, and Leopad as shown in Figure 7. We 

deployed Spark, Hadoop, Hive, Hbase on all of 5 machines. Each 

slave node has 4 CPU cores and 16GB of RAM. The IP address 

of the master node sets to 192.168.20.101, and other slave nodes, 

region servers, or workers have IP addresses from 192.168.20.102 

to 192.168.20.105. The network deployment of the big data 

frameworks in our platform is as shown in Figure 7.

For Hadoop framework, the NameNode process and the 

YARN cluster manager are launched on the master node, and 

each slave node is responsible for launching its own DataNode 

process. In our platform, the amount of physical memory which is 

allocated for containers in our Hadoop framework is 64GB. 

Therein, the minimum allocation for every container request at 

the resource manager sets to 1GB, the amount of memory to 

request from the scheduler for each map/reduce task sets to 2GB.

For Spark framework, the master process and the built-in 

standalone cluster are started on the master node. Each worker is 

responsible for launching the executor process. Here, the amount 

of memory to use for the driver process set to 1GB, while amount 

of memory to use per executor process set to 14GB.

For HBase framework, the HMaster process is launched on the 

master node. This master processes may be collocated with the 

Hadoop NameNode and Resource Manager. Designate the 

remaining nodes as RegionServer nodes. Each node runs a 

RegionServer, which may be collocated with a Hadoop 

NodeManager and a DataNode.

Besides, other frameworks which support to import and 

transfer the data to HDFS such as Sqoop and Apache Fume are 

launched on the master node.

Ⅶ. Evaluation

In this section, we evaluate our platform in three main function 

including : data collecting, data storage and data processing.

6-1 Evaluation of Data Collecting

For real-time data collecting, we deployed Flume on master 

node, in which, one agent is configured to collect the data that are 

generated by the web site of Gwangju Seobu market. We 

implemented an application to simulate a service that provides 

product price data in real-time manner, the data are collected from 

the web site of Gwangju Seobu market and generated to the text 

file in every two minutes. The Flume agent monitor this file and 

transfer the data to HDFS in our system. Through this evaluation 

we observed that the HDFS files are created in every two minute 

successfully.

For archival data collecting, we experimented with crawling 

data generated by two sites, Gwangju Seo market and Eomgung 

market in 6 months from January 2016 to June 2016. Here, we 

run only one Hadoop job with 12 map tasks, and it takes 788 

minutes to collect price data from 144,000 web pages. That is, 

price data of each page are collected in around 330 milliseconds. 

On the other hand, with the single machine with 8 CPU cores, the 

total time cost for collecting similar amount of archival data takes 

more than 8000 minutes. According to these results, it is observed 

림 7. 플랫폼 설치 이아웃

Figure 7. Layout of platform deployment
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that our platform can collect archival data more efficiently that 

powerful standalone solutions.

6-2 Evaluation of Data Storage

In order to evaluate the performance of data storage in our 

platform, we setup an experiment on Spark to compare the 

execution time of searching data stored in HDFS and HBase. We 

perform a sequential searching to calculate the total field area of 

each farm in agricultural dataset. It is useful for a manager who 

monitors the statistic information of each farm. Another case is 

random searching to calculate total field area of some given farms 

specified by Farm IDs. It is useful for a user to get the 

information of a specific farm.

Figure 8 shows the result of sequential searching. In this case, 

Spark with HDFS performs faster than Spark with HBase. On the 

other hands, in the case of random searching, Spark with HBase 

has better performance than Spark with HDFS as shown in Figure 

9. Because HBase provides Column-Family mechanism and 

Row-ID access, Spark with HBase spends less time in reading 

data in random.

6-3 Evaluation of Data Processing

For evaluating the performance of handling non-iterative jobs, 

we implement a computation module for calculating total field 

area of farms on Hadoop and Spark. Figure 10 shows the 

execution time each computation module on various size of 

dataset from 0.5GB to 2.0GB. From the result, it is observed that 

the execution time of Hadoop and Spark increases along with the 

size of data. It is also observed that the computation module 

running on Spark outperforms Hadoop around 1.4 times in an 

average of execution time for all cases of data size.

For evaluating the performance of handling iterative jobs, we 

implement a computation module for clustering soil data with 

K-means algorithm on Hadoop and Spark. To compare the 

performance between Hadoop and Spark in detail, the number of 

data points for clustering and the number of iterations are varied. 

Figure 11 and Figure 12 shows the results of running K-means 

algorithm with various number of data points and various number 

of iterations, respectively. In both figures, it is observed that the 

execution time of Hadoop increases greatly along with both of 

parameters but Spark keeps the execution time relatively smaller 

than Hadoop. In Figure 11, Spark is around 5.5 times faster than 

Hadoop for varying number of data points. In Figure 12, Spark is 

around 2 time faster than Hadoop with two iterations, but Spark is 

about around 6 times faster than Hadoop with eight iterations. 

According to these results, it is proved that iterative jobs are well 

suited to Spark rather than Hadoop.

For evaluating the performance of image processing module, 

we implement a image processing module for calculating 

histogram of images on Hadoop. For evaluating the performance 

of our platform with large amount of image data, multiple data 

sets of crop/weed images with different number of images from 

림 10. 다양한 데이터 크기에 대한 하둡과 스파크 성능 비

Figure 10. Comparison between Hadoop and Spark with 

varying data size.

림 8. 연속 검색의 성능 비

Figure 8. Comparison of sequential searching

림 9. 무작위 검색의 성능 비

Figure 9. Comparison of random searching
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100 to 800 are collected from Internet. The size of each image is 

around 1.5MB in average. Then, the image processing module 

runs (1) an algorithm for converting the color image to grayscale 

image and (2) Otsu’s algorithm for the binarizing image, which 

are in Low-level Image Processing module. To compare the 

performance of our platform with a traditional image processing 

technique, we also implemented a program in Java which 

conducts the same algorithms in a single machine. We named this 

program using a single machine as local-based approach through 

this evaluation.

Figure 13 shows the comparison of execution time between 

our proposed platform and local-based approach. With a small 

image dataset (100 images), the execution time of local-based 

approach is smaller than our platform. Because our platform 

needs to read/write the data at the initial state of the whole 

process, so it spends more time to setup the process than 

local-based approach. However, with a large image data set more 

than 400 images, our platform executes faster than local-based 

approach. Thus, our platform is more scalable in aspects of the 

volume of input dataset.

We also evaluate the efficiency and scalability in the aspects of 

CPU cores. Figure 14 shows the execution time of image 

processing algorithms with 400 images on our platform with 

various number of CPU cores from 8 to 32. It is observed that the 

execution time decreases dynamically when the number of CPU 

cores increases. The execution time with 8 CPU cores takes more 

1000 seconds; meanwhile, the execution time with 32 CPU cores 

림 13. 제안된 플랫폼과 기존 컬 솔 션간의 이미지 

처리 수행시간 비

Figure 13. Comparison of execution time of image 

processing between our platform and Local 

-based solution

림 12. 반복횟수에 따른 K-mean 알고리즘 수행시간

Figure 12. Execution time of K-means algorithm with 

various number of iterations

림 14. CPU 코어 개수에 따른 이미지 처리 수행시간

Figure 14. Execution time of image processing with 

various number of CPU cores

림 11. 데이터 포인트 개수에 따른 K-mean 알고리즘 수행시간

Figure 11. Execution time of K-means algorithm with 

various number of data points
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decreases down to 229 seconds. That is, our platform is much 

more efficient and scalable than local based approach in the 

aspects of processing power as well.

Ⅷ. Conclusion

We presented a novel design of a platform for collecting, 

storing and analyzing agricultural big data. In the aspect of 

collecting modules of our platform, Apache Flume is used to 

crawl the real-time data which simplifies collecting data from 

many sources and transfers data to HDFS. Hadoop is used to 

collect the archival data such as huge data set from multiple web 

sites, in which only map function is utilized in combination with 

Jsoup API to speed aggregate data. Moreover, Sqoop is used to 

import offline data to HDFS, Hive, and HBase. In the aspect of 

storage modules of our platform, HDFS is used for the basic 

storage module which contains the raw data of our platform and 

supports sequential data searching algorithms. HBase is used for a 

storage module which supports efficient random data accessing 

algorithms. Moreover, Hive is used for supporting simple SQL 

style data queries. In the aspect of processing modules, templates 

for non-iterative and iterative jobs are supported and low and high 

level image processing jobs are supported. Especially, Spark is 

used for templates of non-iterative jobs in order to decrease the 

execution time.

For future works, we focus on applying additional analysis 

templates with deep learning techniques for our platform to 

provide more efficient and useful information to the users.
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