
Copyright ⓒ 2017 The Digital Contents Society 149 http://www.dcs.or.kr pISSN: 1598-2009 eISSN: 2287-738X

JDCS 디지털콘텐츠학회논문지
Journal of Digital Contents Society
Vol. 18, No. 1, pp. 149-158, Feb. 2017

농업 빅데이터 수집 및 분석을 한 플랫폼 설계

엔 반 퀴엣 · 엔 신 녹 · 김 경 백*

전남대학 전자컴 터공학부

Design of a Platform for Collecting and Analyzing Agricultural Big

Data

Van-Quyet Nguyen · Sinh Ngoc Nguyen · Kyungbaek Kim*

Department of Electronics and Computer Engineering, Chonnam National University

[요 약]

빅 는 경제개 에 흥미 운 회 도전 보여 다. 들어, 농업 야에 날씨 양 같 복

합 조합과 들 결과는 농업종사 농업경 체들에게 귀중하고 도움 는 정보 제공한다. 그러나 농업

는 들과 농업 웹 마켓 등 다양한 형태 치 비스들 통해 매 마다 규 생 다. 는 수집, 저 ,

과 같 빅 슈들 생시킨다. 비 시스 들 문제 해결하 해 제안 었 나, 들 다루는

종 제약, 저 식 제약, 크 제약 등 문제 여전히 가지고 다. 논문에 는 농업 수집과 플

랫폼 새 운 계 제안한다. 제안하는 플랫폼 (1) Flume과 MapReduce 한 다양한 스들 수

집 , (2) HDFS, HBase, 그리고 Hive 한 다양한 저 , (3) Spark Hadoop 한 빅 듈들

제공한다.

[Abstract]

Big data have been presenting us with exciting opportunities and challenges in economic development. For instance, in the

agriculture sector, mixing up of various agricultural data (e.g., weather data, soil data, etc.), and subsequently analyzing these data

deliver valuable and helpful information to farmers and agribusinesses. However, massive data in agriculture are generated in

every minute through multiple kinds of devices and services such as sensors and agricultural web markets. It leads to the

challenges of big data problem including data collection, data storage, and data analysis. Although some systems have been

proposed to address this problem, they are still restricted either in the type of data, the type of storage, or the size of data they

can handle. In this paper, we propose a novel design of a platform for collecting and analyzing agricultural big data. The proposed

platform supports (1) multiple methods of collecting data from various data sources using Flume and MapReduce; (2) multiple

choices of data storage including HDFS, HBase, and Hive; and (3) big data analysis modules with Spark and Hadoop.

색인어 : 농업 빅데이터 플랫폼, 분산시스템, 수집, 분석, 저장

Key word : Agricultural Big Data Platform, Distributed Systems, Collecting, Analyzing, Storage.

http://dx.doi.org/10.9728/dcs.2017.18.1.149

This is an Open Access article distributed under
the terms of the Creative Commons Attribution
Non-CommercialLicense(http://creativecommons

.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial
use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Received 21 December 2016; Revised 29 December 2016

Accepted 25 February 2017

*Corresponding Author: Kyungbaek Kim

Tel:

E-mail:

디지털콘텐츠학회논문지(J. DCS) Vol. 18, No. 1, pp. 149-158, Feb. 2017

http://dx.doi.org/10.9728/dcs.2017.18.1.149 150

Ⅰ. Introduction

Big data plays an important role in modern agriculture

development. It has been a key driver of the progress made in

precision agriculture, whereby farmers and agribusinesses are

using the resources at their disposal in the most efficient way

possible to get maximum yields. However, the massive data in

agriculture are generated in every minute through multiple kinds

of devices and services such as sensors, social networks, and

agricultural web markets. Therefore, collecting these data from

the many sources and translating them into useful information are

the challenges of big data in order to improve business processes

continuously.

There are several techniques and tools for collecting data from

web sites as shown in [1][2]. The most popular web page

analyzing tool is Jsoup [3] based on Java. Jie Wang et al. [4] have

been designed and implemented an agricultural products big data

platform based on Jsoup, in which the data were extracted from

the URL and contents of agricultural web sites. However, their

system only supported to deploy on a single computer which

encounters various challenges of big data problem. Also,

collecting data from web sites has a limitation of the number of

available HTTP requests. It often takes a few seconds per request

to obtain available resources. Meanwhile, most of agriculture web

sites provide the data as a form of a table with many pages, and it

requires a lot of simultaneous HTTP requests to crawl these data.

For example, in the web site of Gwangju Seobu market, the price

data of agriculture products are generated in around five hundred

pages per day, and these data are updated continuously in every a

few minutes. Therefore, in order to crawl these continuous and

large data with high performance as well as high availability, it is

essential to design a crawling system which collects data in

parallel and real-time fashion. In this paper, we design a data

collector based on Flume [5] and Hadoop [6] framework (more

details see in Section 3).

For data storage, a traditional database system such as a

Relational DataBase Management System (RDBMS) is not

suitable to store various types of big data. Currently, Hadoop

Distributed Files System (HDFS) [7] is widely used for a basic

distributed storage of big data. It enables scalable and reliable

data storage, and it was designed to span large clusters of

commodity servers. Besides HDFS which is a basic storage, a

storage framework for big data is Hbase. Actually Hbase has a

data model designed to provide quick random access to huge

amounts of structured data. It is built on the top Apache Hadoop

and becomes an increasingly popular database choice for

applications which need fast random access to large amounts of

data. Another data storage framework is Hive which is used to

store and process big data in distributed environment with

SQL-like query language called Hive Query Language(HiveQL).

In our platform, we utilize the advantages of both storage

frameworks for designing data storage modules (more details see

in Section 4).

For analyzing big data, there are several frameworks

supporting effective parallel processing in distributed modes.

Apache Hadoop has been the most popular framework for big

data processing. It provides a parallel computation model

MapReduce [8]. Recently, Apache Spark [9] has emerged as a

leading distributed computing framework for real-time analytics

with its memory-oriented architecture and flexible processing

libraries. These two frameworks are being widely used in many

big data applications, and there are some reports for simple

performance comparison between Hadoop and Spark in past

[10][11]. However, no comprehensive study related to the

performance of these two frameworks in the aspect of the volume

of data and the complexity of computation. In this paper, we

highlight the performance comparison between Spark and

Hadoop with various volumes and complexities in order to

evaluate the design choice of data processing modules of our

proposed agricultural big data platform.

The rest of this paper is organized as follows. In Section 2, we

present the architecture of agricultural big data platform. Section

3 shows the design choice of data collecting modules for crawling

and aggregating real-time and archival data from Internet. The

design choice of data storage modules is presented in Section 4.

In section 5, we presented the design choice of big data

processing which conducts not only simple arithmetic calculation

but also various complex analyses such as machine learning

algorithms and image processing algorithms. Section 6 shows the

experiment results to evaluate our proposed platform. Finally, we

conclude this paper and discuss future works in Section 7.

Ⅱ. Architecture of Proposed Platform

We propose a platform for collecting and analyzing agriculture

big data with four parts as follows: Data Collector, Data Storage,

Data Analysis, and Decision Making module. Figure 1 shows the

overview of the architecture of our platform.

The first component in our architecture is Data Collector. We

separate input data into two kinds of input, the first one is

real-time data from sensors or web pages and the second is

archival data from archives. For real-time data, we use Flume to

collect them into HDFS. For archival data, whose volume is huge,

Design of a Platform for Collecting and Analyzing Agricultural Big Data

151 http://www.dcs.or.kr

we develop a MapReduce-based module to increase the speed of

collecting data by gathering them in the parallel manner. During

collecting data we use Data Cleaner to remove the redundant data

and irregular data.

In order to store the data from Data Collector, we use Hadoop

Distributed File System (HDFS) as a basic big data distributed

storage running on commodity servers with low-cost hardware.

For Data Storage, we also have HBase which is a distributed

column-oriented database built on top of HDFS. Hbase is a data

model designed to provide quick random access to huge amounts

of structured data. We use other big data storage, Hive, that is a

data warehouse infrastructure tool to process structured data in

Hadoop. It resides on top of Hadoop to summarize big data, and

makes querying easy. Also, we use Sqoop to import data from csv

and xls files into HDFS, Hive or HBase. Sqoop is also used to

export the results after analysis back to MySQL.

Data Analysis is an important component in the proposed

platform. After collecting and storing data, we develop

Spark-based and Hadoop-based processing modules for analyzing

a large amount of data with various methods. To show the

viability of our platform, we implement various machine learning

algorithms to making clusters or classifying data in these

processing modules such as K-Mean and Naive Bayes.

The last module of the system is Decision Making module. It

receives the result from the Data Analysis module, and generate

some useful decisions for user to manage their farm easily. Also,

it provides the statistical data stored in Data Storage such as

HDFS, Hive, HBase and MySQL for users to use various kinds of

purposes.

Ⅲ. Design Choice of Collecting Module

3-1 Design of Real-Time Data Crawling Module

This module is designed to crawl the data generated by other

systems or services. To simplify the crawling process, we use

powerful capabilities of handling streaming data of Flume for

collecting real-time data efficiently and moving large amounts of

data periodically into HDFS.

Figure 2 shows our design for collecting data using Flume. In

this model, we use text files as input data of Flume, such as price

data of products provided from agricultural web sites. We set the

type of a source is Exec which runs a given command such as

“tail –F [file]” to generate the fresh and periodic data of prices

continuously. Here, the memory is used as a Flume channel and

the generated data from sources are stored in memory. Note that,

the number of data in channel is configurable in Flume. For the

final output data, we chose sink type as HDFS which writes

events into the HDFS as text file format, and these files are used

for further analysis.

3-2 Design of Archival Data Crawling Module

림 1. 제안 조의 개요

Figure 1. Overview of the proposed architecture

림 3. 하둡 맵리듀스를 이용한 기 적 데이터 수집

Figure 3. Archival data collecting with Hadoop Map

Reduce

림 2. 아파치 플럼을 이용한 실시간 데이터 수집

Figure 2. Real-time data collecting with Apache Flume

디지털콘텐츠학회논문지(J. DCS) Vol. 18, No. 1, pp. 149-158, Feb. 2017

http://dx.doi.org/10.9728/dcs.2017.18.1.149 152

림 4. 맵 함수인 DataCrawl의 알고리즘

Figure 4. Algorithm of DataCrawl for map function

Not only real-time data, but also archival data is essential for

big data analysis. That is, more data is better than more

sophisticated modelling. Thus, we design a module to collect the

archival data from various web sites such as few years long price

data of agricultural products and few years weather information.

We observed that the data structure of displaying product price is

similar in the most of Korean agriculture web markets, and the

amount of data per year is approximately two millions of records.

To collect these huge data efficiently, we use Hadoop framework

with MapReduce programming model.

In Figure 3, a simple model of gathering archival data from

web sites which are described on HDFS input files. A HDFS file

contains the information of procedures which we want to gather

from various web sites. The information of procedures is

described as a tuple of a product code, the url of a web site, target

year, and target month. The information of procedures are divided

and each map function handles them with DataCrawl procedures

which uses Jsoup API to connect and extract data from the web

site corresponding the information of procedures and store the

extracted data into HDFS. That is, each map function collects the

data of product prices from agriculture web market in the order of

years and months. Detail algorithm of DataCrawl is described in

Figure 4.

In this module we omit reduce functions, even though

MapReduce framework provides both of map and reduce function

because the job of collecting archival data is simple. According to

this we can take advantages in time by ignoring shuffle and sort

phase between map and reduce function.

Ⅳ. Design Choice of Data Storage

Module

4-1 Design of Basic Distributed Storage

Basically, we need a basic storage for storing raw data which

contains the crawled information from web sites, sensors, and

users. These raw data are usually contained in text files in

sequential manner. For example, in case of image processing we

may convert a RGB color image into gray image which includes

arrays of bits 0 and 1, and the price data crawled from web sites

are stored in a text file. These raw data are the basic data for

analysis and we use HDFS as a basic storage for them.

4-2 Design of Storage for Random Access

Even though most of data are stored on HDFS in our platform,

we also use HBase to store structured data in order to improve

the performance of searching random data. Sometimes, it is

required to access any point of data during big data analysis. That

is, it is essential to provide quick random access to huge amount

of data in our platform. In order to achieve this effective random

access, we use HBase for manage a data schema and data storage

for random access.

Figure 5 shows an example of data schema for agricultural data

in HBase table. It provides a column-oriented and row-oriented

mechanism and it manages data through column families and

Row-ID. Each column family includes several sub-columns like

the columns in SQL database. When we load the data from HBase

table to processing phase, all of sub-column will be load together.

It is more convenient for programmer in processing data. Row-ID

is an identity of each row. It looks like the index in SQL, which is

used for random data access.

림 5. Hbase 테이블 데이터 저장의 예

Figure 5. Example of storing data on HBase Table

Design of a Platform for Collecting and Analyzing Agricultural Big Data

153 http://www.dcs.or.kr

4-3 Design of Storage for querying data

In our platform, we also consider an easy API for querying

data with SQL query language. For this, we use Hive because it is

simple to implement and easy to integrate into our platform. Hive

is built on the top of Hadoop and provides SQL query language

called HiveQL for easy interacted to data.

Ⅴ. Design Choice of Processing Module

In agricultural data processing, we considers to two kinds of

data: one is text data and another is image data.

For processing text data, we often work with two kind of

algorithms: (1) the arithmetic calculation that used to process data

with only one step (non-iterative job) and (2) machine learning

algorithms which process data with iterative computation. Both of

algorithms are supported by our platform with Hadoop and Spark.

For handling image data, we design and implement a image

processing module which provides customized InputFormat and

OutputFormat classes of Hadoop for representing image, and

contains image processing algorithms.

5-1 Design of Non-Iterative Processing

For data analysis, we can consider a non-iterative processing

job which runs one-time and gets the result. For example,

calculating the total field area of each farm or the average product

price of each market is a non-iterative processing job. This job

handle very large volume of data set such as 2GB of agriculture

data with more than 11 millions of records which contains the

information about the farm and its related information (the area

over each field, products for each field). For supporting this kind

of jobs, we provide simple algorithm templates for non-iterative

jobs on both Hadoop and Spark.

5-2 Design of Iterative Processing

The purpose of this case is to evaluate the performance of

Hadoop and Spark in processing a huge amount of data with an

iterative algorithm such as K-means algorithm. K-means

algorithm is a well-known clustering method. It groups objects

(data points) based on features into K number of groups. K-means

algorithm performs the following steps:

Step 1: Selecting k data points from dataset to be used as each

cluster centroid (random).

Step 2: Assigning data points to clusters according to their

distance to each cluster centroid.

Step 3: For each cluster, recomputing its cluster centroid using

the newly assigned cluster members.

Step 4: Going back to step 2 until the process converges.

In k-means algorithm, the computation cost is mainly made in

the step 2 for calculating distances, and in each iteration it

requires a total of (n*k) times of distance computations.

Therefore, the performance of each iteration is the key for

improving the performance of the algorithm. According to this,

we separate the distance calculation step from the main algorithm

and implement a map-reduce function for this step for

MapReduce and Spark. It is possible because the execution order

of distance calculation does not affect the final result of

clustering. Especially for Spark, we implement a Java program to

set up the parameters and call functions of K-means algorithm in

Spark MLlib library.

Based on this simple design and implementation, we provide a

simple templates for iterative jobs on MapReduce and Spark for

supporting iterative jobs.

5-3 Design of Image Processing Module

In our platform, image processing operations can be divided

into two levels including low-level image processing and

high-level image processing. For low-level image processing, we

provide algorithms for pre-processing which operates at the pixel

level. The input to low-level image processing operators is an

image whereas the output is either image or data. For high-level

image processing, we implement the algorithms in order to

generate higher abstractions. They are used to interpret the image

content such as classification and object recognition.

For an example, we implemented a Hadoop based image

histogram calculation as a low-level image processing. A original

image has three intensive levels in histrogram including i1, i2 and

i3. To calculate the histogram for a image with Hadoop, the

original image is sliced into sub-images and stored on HDFS.

Then, the following three steps are performed like figure 6.

림 6. 맵리듀스를 이용한 이미지 히스토 램 계산

Figure 6. Image histogram calculation using MapReduce

디지털콘텐츠학회논문지(J. DCS) Vol. 18, No. 1, pp. 149-158, Feb. 2017

http://dx.doi.org/10.9728/dcs.2017.18.1.149 154

Step 1: Each file is read, then the intensities of pixels are

calculated by map tasks. The input for each map task is a pair

(key, value), in which key is identified by file name and value is

the content of sub-image. The output of map task is the list of

(key’,value’), in which key’ is the intensity level and value’ is the

number of pixels corresponds to the intensity level.

Step 2: It collects all of (key’,value’) pairs of map tasks, then

sort and shuffle by key’. The pairs with the same key’ usually are

gathered belong to a group which will be processed by the same

reduce task.

Step 3: In the reduce phase, the input is the output of the

combiner in Step 2, each reduce task has a different key. In this

example, the key for each reduce task is chosen corresponds to

each intensity level in the image. This phase performs a

calculation total of pixels for each intensity level. By assembling

the output of each reduce task, we can get the final result that is a

histogram of the original image.

Ⅵ. Platform Deployment

To show viability of our platform, we deploy our proposed

platform into real machines and evaluate it. Five machines are

used to deploy the proposed platform which is composed of one

master node and four slave nodes consequently named as Tiger,

Lion, Jaguar, Cheetah, and Leopad as shown in Figure 7. We

deployed Spark, Hadoop, Hive, Hbase on all of 5 machines. Each

slave node has 4 CPU cores and 16GB of RAM. The IP address

of the master node sets to 192.168.20.101, and other slave nodes,

region servers, or workers have IP addresses from 192.168.20.102

to 192.168.20.105. The network deployment of the big data

frameworks in our platform is as shown in Figure 7.

For Hadoop framework, the NameNode process and the

YARN cluster manager are launched on the master node, and

each slave node is responsible for launching its own DataNode

process. In our platform, the amount of physical memory which is

allocated for containers in our Hadoop framework is 64GB.

Therein, the minimum allocation for every container request at

the resource manager sets to 1GB, the amount of memory to

request from the scheduler for each map/reduce task sets to 2GB.

For Spark framework, the master process and the built-in

standalone cluster are started on the master node. Each worker is

responsible for launching the executor process. Here, the amount

of memory to use for the driver process set to 1GB, while amount

of memory to use per executor process set to 14GB.

For HBase framework, the HMaster process is launched on the

master node. This master processes may be collocated with the

Hadoop NameNode and Resource Manager. Designate the

remaining nodes as RegionServer nodes. Each node runs a

RegionServer, which may be collocated with a Hadoop

NodeManager and a DataNode.

Besides, other frameworks which support to import and

transfer the data to HDFS such as Sqoop and Apache Fume are

launched on the master node.

Ⅶ. Evaluation

In this section, we evaluate our platform in three main function

including : data collecting, data storage and data processing.

6-1 Evaluation of Data Collecting

For real-time data collecting, we deployed Flume on master

node, in which, one agent is configured to collect the data that are

generated by the web site of Gwangju Seobu market. We

implemented an application to simulate a service that provides

product price data in real-time manner, the data are collected from

the web site of Gwangju Seobu market and generated to the text

file in every two minutes. The Flume agent monitor this file and

transfer the data to HDFS in our system. Through this evaluation

we observed that the HDFS files are created in every two minute

successfully.

For archival data collecting, we experimented with crawling

data generated by two sites, Gwangju Seo market and Eomgung

market in 6 months from January 2016 to June 2016. Here, we

run only one Hadoop job with 12 map tasks, and it takes 788

minutes to collect price data from 144,000 web pages. That is,

price data of each page are collected in around 330 milliseconds.

On the other hand, with the single machine with 8 CPU cores, the

total time cost for collecting similar amount of archival data takes

more than 8000 minutes. According to these results, it is observed

림 7. 플랫폼 설치 이아웃

Figure 7. Layout of platform deployment

Design of a Platform for Collecting and Analyzing Agricultural Big Data

155 http://www.dcs.or.kr

that our platform can collect archival data more efficiently that

powerful standalone solutions.

6-2 Evaluation of Data Storage

In order to evaluate the performance of data storage in our

platform, we setup an experiment on Spark to compare the

execution time of searching data stored in HDFS and HBase. We

perform a sequential searching to calculate the total field area of

each farm in agricultural dataset. It is useful for a manager who

monitors the statistic information of each farm. Another case is

random searching to calculate total field area of some given farms

specified by Farm IDs. It is useful for a user to get the

information of a specific farm.

Figure 8 shows the result of sequential searching. In this case,

Spark with HDFS performs faster than Spark with HBase. On the

other hands, in the case of random searching, Spark with HBase

has better performance than Spark with HDFS as shown in Figure

9. Because HBase provides Column-Family mechanism and

Row-ID access, Spark with HBase spends less time in reading

data in random.

6-3 Evaluation of Data Processing

For evaluating the performance of handling non-iterative jobs,

we implement a computation module for calculating total field

area of farms on Hadoop and Spark. Figure 10 shows the

execution time each computation module on various size of

dataset from 0.5GB to 2.0GB. From the result, it is observed that

the execution time of Hadoop and Spark increases along with the

size of data. It is also observed that the computation module

running on Spark outperforms Hadoop around 1.4 times in an

average of execution time for all cases of data size.

For evaluating the performance of handling iterative jobs, we

implement a computation module for clustering soil data with

K-means algorithm on Hadoop and Spark. To compare the

performance between Hadoop and Spark in detail, the number of

data points for clustering and the number of iterations are varied.

Figure 11 and Figure 12 shows the results of running K-means

algorithm with various number of data points and various number

of iterations, respectively. In both figures, it is observed that the

execution time of Hadoop increases greatly along with both of

parameters but Spark keeps the execution time relatively smaller

than Hadoop. In Figure 11, Spark is around 5.5 times faster than

Hadoop for varying number of data points. In Figure 12, Spark is

around 2 time faster than Hadoop with two iterations, but Spark is

about around 6 times faster than Hadoop with eight iterations.

According to these results, it is proved that iterative jobs are well

suited to Spark rather than Hadoop.

For evaluating the performance of image processing module,

we implement a image processing module for calculating

histogram of images on Hadoop. For evaluating the performance

of our platform with large amount of image data, multiple data

sets of crop/weed images with different number of images from

림 10. 다양한 데이터 크기에 대한 하둡과 스파크 성능 비

Figure 10. Comparison between Hadoop and Spark with

varying data size.

림 8. 연속 검색의 성능 비

Figure 8. Comparison of sequential searching

림 9. 무작위 검색의 성능 비

Figure 9. Comparison of random searching

디지털콘텐츠학회논문지(J. DCS) Vol. 18, No. 1, pp. 149-158, Feb. 2017

http://dx.doi.org/10.9728/dcs.2017.18.1.149 156

100 to 800 are collected from Internet. The size of each image is

around 1.5MB in average. Then, the image processing module

runs (1) an algorithm for converting the color image to grayscale

image and (2) Otsu’s algorithm for the binarizing image, which

are in Low-level Image Processing module. To compare the

performance of our platform with a traditional image processing

technique, we also implemented a program in Java which

conducts the same algorithms in a single machine. We named this

program using a single machine as local-based approach through

this evaluation.

Figure 13 shows the comparison of execution time between

our proposed platform and local-based approach. With a small

image dataset (100 images), the execution time of local-based

approach is smaller than our platform. Because our platform

needs to read/write the data at the initial state of the whole

process, so it spends more time to setup the process than

local-based approach. However, with a large image data set more

than 400 images, our platform executes faster than local-based

approach. Thus, our platform is more scalable in aspects of the

volume of input dataset.

We also evaluate the efficiency and scalability in the aspects of

CPU cores. Figure 14 shows the execution time of image

processing algorithms with 400 images on our platform with

various number of CPU cores from 8 to 32. It is observed that the

execution time decreases dynamically when the number of CPU

cores increases. The execution time with 8 CPU cores takes more

1000 seconds; meanwhile, the execution time with 32 CPU cores

림 13. 제안된 플랫폼과 기존 컬 솔 션간의 이미지

처리 수행시간 비

Figure 13. Comparison of execution time of image

processing between our platform and Local

-based solution

림 12. 반복횟수에 따른 K-mean 알고리즘 수행시간

Figure 12. Execution time of K-means algorithm with

various number of iterations

림 14. CPU 코어 개수에 따른 이미지 처리 수행시간

Figure 14. Execution time of image processing with

various number of CPU cores

림 11. 데이터 포인트 개수에 따른 K-mean 알고리즘 수행시간

Figure 11. Execution time of K-means algorithm with

various number of data points

Design of a Platform for Collecting and Analyzing Agricultural Big Data

157 http://www.dcs.or.kr

decreases down to 229 seconds. That is, our platform is much

more efficient and scalable than local based approach in the

aspects of processing power as well.

Ⅷ. Conclusion

We presented a novel design of a platform for collecting,

storing and analyzing agricultural big data. In the aspect of

collecting modules of our platform, Apache Flume is used to

crawl the real-time data which simplifies collecting data from

many sources and transfers data to HDFS. Hadoop is used to

collect the archival data such as huge data set from multiple web

sites, in which only map function is utilized in combination with

Jsoup API to speed aggregate data. Moreover, Sqoop is used to

import offline data to HDFS, Hive, and HBase. In the aspect of

storage modules of our platform, HDFS is used for the basic

storage module which contains the raw data of our platform and

supports sequential data searching algorithms. HBase is used for a

storage module which supports efficient random data accessing

algorithms. Moreover, Hive is used for supporting simple SQL

style data queries. In the aspect of processing modules, templates

for non-iterative and iterative jobs are supported and low and high

level image processing jobs are supported. Especially, Spark is

used for templates of non-iterative jobs in order to decrease the

execution time.

For future works, we focus on applying additional analysis

templates with deep learning techniques for our platform to

provide more efficient and useful information to the users.

Acknowledgement

This work was carried out with the support of "Cooperative

Research Program for Agriculture Science and Technology

Development (Project No. PJ01182302)" Rural Development

Administration, Republic of Korea.

References

[1] Ferrara, Emilio, et al. "Web data extraction, applications and

techniques: a survey." Knowledge-based systems 70

(2014): 301-323.

[2] Geng, Hua, Qiang Gao, and Jingui Pan. "Extracting content

for news web pages based on DOM." IJCSNS International

Journal of Computer Science and Network Security 7.2

(2007): 124-129.

[3] Jonathan Hedley. “Jsoup: Java HTML Parser”,

https://jsoup.org/

[4] Wang, Jie, et al. "The crawling and analysis of agricultural

products big data based on Jsoup." Fuzzy Systems and

Knowledge Discovery (FSKD), 2015 12th International

Conference on. IEEE, 2015.

[5] Apache Flume, https://flume.apache.org/.

[6] Apache Hadoop, http://hadoop.apache.org (2009).

[7] Borthakur, Dhruba. "HDFS architecture guide." HADOOP

APACHE PROJECT http://hadoop. apache.

org/common/docs/current/hdfs design. pdf (2008): 39.

[8] Dean, Jeffrey, and Sanjay Ghemawat. "MapReduce:

simplified data processing on large clusters."

Communications of the ACM 51.1 (2008): 107-113.

[9] Zaharia, Matei, et al. "Spark: Cluster Computing with

Working Sets." HotCloud 10 (2010): 10-10.

[10] Gopalani, Satish, and Rohan Arora. "Comparing apache

spark and map reduce with performance analysis using

K-means." International Journal of Computer Applications

113.1 (2015).

[11] Seung-jun Choi, Jae-Won Park, Jong-Bae Kim and

Jae-Hyun Choi, “A Quality Evaluation Model for

Distributed Processing Systems of Big Data”, Journal of

Digital Contents Society, Vol. 15, Issue 4, pp 533-545,

2014

디지털콘텐츠학회논문지(J. DCS) Vol. 18, No. 1, pp. 149-158, Feb. 2017

http://dx.doi.org/10.9728/dcs.2017.18.1.149 158

Van-Quyet Nguyen

2005: Hung Yen University of Technology and Education. (B.S. Degree).

2011: Ha Noi University of Science and Technology (M.S. Degree).

2015: Chonnam National University. South Korea (Ph.D Degree).

2009～2015: Lecturer in Hung Yen University of Technology and Education.

2015～now： School of Electronics and Computer Engineering.

※Research Interest： BigData Platform, Content Delivery Network, Recommendation System

Sinh Ngoc Nguyen

2009: VietNam National University Ho Chi Minh City - University of Information

Technology (B.S. Degree)

2015: Chonnam National University, South Korea (M.S. Degree).

2013～2015 : Software Engineer at Integrated Circuit Design Research and Education Center

2015～now： School of Electronics and Computer Engineering

※Research Interest： BigData Platform, Software Defined Network, IoT Security

Kyungbaek Kim

1999: Korea Advanced Institute of Science and Technology (KAIST) (B.S. Degree)

2001: Korea Advanced Institute of Science and Technology (KAIST) (M.S Degree)

2007: Korea Advanced Institute of Science and Technology (KAIST) (Ph.D Degree)

2007~2011: Postdoctoral Researcher in University of California Irvine

2012~ now : Professor in Chonnam National University, Gwangju, Korea

Research Interest : Distributed System, Middleware, P2P/Overlay Network, Social Network, SDN

